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A scheme combining finite element and splitting-up methods is suggested for the numerical 
solution of a parabolic equation in two dimensions. Approximation in space variables is 
implemented by the finite element method on a rectangular grid, triangulated by the diagonals. 
A finite-difference operator of the problem is split into four positive semidefinite one- 
dimensional operators acting along coordinate and diagonal directions. For the integration 
with respect to time, a two-cycle splitting-up scheme of the solution is used. The application of 
the method to a nonuniform grid topologically equivalent to a rectangular one is studied, and 
the stability conditions of the splitting-up method in this case are obtained. 

INTRODUCTION 

This study is natural continuation of the works devoted to the splitting-up methods 
[l-6] and their applications to the solution of evolutionary equations with the use of 
the Galerkin method [l&-12]. 

A new splitting-up method is suggested for the difference operator of the finite 
element method, approximating the two-dimensional parabolic second-order equation. 
The equation has mixed derivatives of a specific form, natural for a wide class of 
problems in oceanology, atmospheric dynamics, and others. Solution of the equation 
is approximated on a triangulated domain by means of piecewise-linear functions. 
Splitting of the difference operator in this case is carried out not along two coordinate 
directions as ususal but along four coordinates including diagonal directions of the 
meshes. A similar algorithm was suggested in [21] in the case of finite difference 
approach on a regular grid. 

Section I presents preliminary definitions and description of weak solutions. In 
Section 2, we obtain estimates for the continuous-in-time Galerkin method. Section 3 
discusses properties of the difference operator as a result of application of the 
Galerkin method to the space operator of the problem. The splitting-up method for 
solving problems with respect to time is formulated and substantiated in Section 4. 
Section 5 illustrates results of the solution of the Galerkin equations by the splitting- 
up method on nonuniform grids. Section 6 presents a numerical example calculated 
by the method. 
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1. DEFINITIONS 

In a cylindrical domain Q = B x (0, T] we consider the equation 

--a~%-~---(&-- au a au a au 
at ax ax ay ay ax ay 

&i’“=F, 
ay ax v4 

where LI is a bounded uniconnected domain of space R2 with the boundary S E C2. 
Coeficients A, B, G, Z E C’(D) are the functions X, y; F = F(x, y, t). 

For Eq. (1.1) we set the initial conditions 

and the two types of the boundary conditions, 

and 
au 
av, 

= 0. 

To solve the problem with boundary conditions (1.4), we additionally need to fulfill 
the relation (o F dx & = 0 which yields the fulfillment of the relation 

I 
udxdy=O. (1.4”) 

i-2 

In what follows we assume that solutions for the problem with boundary conditions 
(1.4) are selected from the class of functions satisfying (1.4 *). 

In (1.4) a/& is a conormal derivative to the curve S given by 

a - = cos(nx)A 
BV 

$ + cos(ny)B $ + cos(nx)G 2 + cos(ny)Z ;, 

where n is the external normal to the boundary S. 
For the sake of simplicity, conditions (1.3), (1.4), (1.2) have been assumed to be 

homogeneous; however, this limitation is not basic. 
We rewrite Eq. (l.l), dividing the symmetric and skew-symmetric parts of the 

differential operator with mixed derivatives, on the basis of the representation 

C = (G - Z),‘2, D = (G + Z)/2. 

Then Eq. (1.1) becomes 

au -- a/p a au --- E--“ADaU 
at ax ax ay ay ax ay 

(1.5) 
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Equations of the form (Ll), (1.5) arise in oceanology, particularly, in calculations of 
distributions of different substances in seas and oceans [ 131. In this case, the desired 
function u has a sense of the water impurity concentration, F is the impurity source 
intensity; the terms containing the coefficients A, B, D describe turbulent diffusion of 
the impurity in a water basin. The skew-symmetric terms of Eq. (1.5) describe the 
impurity advection by currents. Here the coefficient C has a sense of the stream 
function, For such problems, it is convenient to represent a skew-symmetric operator 
as a second-order operator since in this case the approximating finite-difference 
operator remains skew-symmetric and the conservation law of squared substance is 
carried out. 

Introduce the notation 

Here W:(a) is the Soboiev space [ 14), J&‘#2> is the subspace formed by the closing 
in W#2) of the functions C?(O) which ate infinitely differentiable and equal to zero 
on S; W:*‘(Q) is the Sobolev-Slobodetsky space (151. If we assume that the con- 
ditions 

A, 3, D, C E c’(L$ FE C’(Q) x CO(O, 7.1, A, B > yz, 

0 < r,(t:+<:)<At; +%:+ 2D3,O,(t: +<:I < 007 (1.6) 

A,B PI, ICI < ~3, Yl~YZ9Y3>0, 

are fulfilled for the coefficients of Eq. (1.5), then there exists a norm generated by a 
bilinear form that corresponds to the operator of the problem 

II u 11: = 1(1(, u), 
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The norm is equivalent to (1. IIw;cn,. In other words, 

Y4 IIavp2, < Il~lle G Y5 lI~IIw;cn,~ Y4,Ys>O- (1.6”) 

Here u belongs to I@;(Q) or IV#J) provided that (1.4*) is fulfilled. It should be 
remembered that in what follows we will make use of the equivalence of these norms. 

The existence and uniqueness of the solutions of problems (1.2), (1.3), (1.4) (1.5) 
are considered in [ 16, 171. It follows from the theorems there that if the coefficients 
of Eq. (1.5) satisfy conditions (1.6), then there exists the unique solution u E W:*‘(Q) 
of problems (IS), (1.2), (1.3) and (IS), (1.3), (1.4) that satisfy the estimate 

II4 w;.‘(y) G c II~llL,(o,T;L,(n)). 

For convenience we will introduce a weak form in space variables of the problems 
under consideration. The weak solution of problem (1.2), (1.3), (1.5) will be the 
function u’E L,(O, T, I@;(Q)) such that 

(C(x, y, O), u) = 0. 

We also define the weak solution of problem (1.4), (1.2), (1.5) as the function 
u^ E L,(O, T, IV@)) such that 

a; c i at’ 0 + I(6 u) = (F: u), 0 E w:(Q), t E (0, q, (1.8) 

(u^(x, Y, O), u) = 0. 
For an approximate solution of problems (1.7), (1.8), we cover the domain Q with a 
rectangular mesh whose nodes are formed by the intersection of xi = x,, + h . i, 
yj = y, + I . j. Here h, r are the numerical parameters denoting the distance between 
the lines, and O(h/r) = O(1). Rectangles of the mesh are triangulated with the 
diagonals depending on the sign of the value 

J’.j 
I+ l,j+ 1 = 

1  ̂si,,i D dx & 
*+1,+1 

If J5’ r+l,j+l > 0 the cell 6j;j,,j+, is triangulated by a positively directed diagonal; if 
J’.i , + I,j+ 1 < 0 it is triangulated by a negatively directed diagonal. 
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We define the domain b 73 s1 with the boundary ,!? as the least combination of 
triangles T, containing fi and denote a set of pairs of indices (i,j) of the nodes 
(xi, yj) belonging to fi by gh and a set of indices (i, j) belonging to g by ph. 

Let us consider also the domain d c R with the boundary $ which is the largest 
combination of triangles belonging to 0. We denote a set of indices (i, j) of the mesh 
nodes belonging to Q by kh and a set of indices corresponding to the boundary nodes 
# by fh. In what follows we will assume that 

J 

dx dy > shr, s = const > 0, 
Tp-lR 

for any triangle T, c d. We determine also the domains R,, Q, by the relations 

nl= (X,Y):(x,Y)EU6j;“‘l,j+,na,Jj~,,j+l~o 5 
i iJ ! 

(1.9) 
n,= (X,y):(x,y)EU6j;j,,j+,nn,Ji;j,,j+,<0 . 

I i,j I 

and denote the boundaries R, , Q, by S,, S,, respectively. Besides, 

Rf = {(i, j): (i,j) E Rh, (Xi,Yj) E a,}, 

2: = {(i, j): (i, j) E lZh, (Xi, Yj) E a,}, 

fif = {(i, j): (i,j) E Rlh, (xi, yj) E Q,}, 

2: = {(i, j): (i, j) E I?“, (xi, yj) E Q,}. 

Let ff, ft, f:, fi be the corresponding sets of indices of the boundary points. 
For every node (i, j) E kh U fh we determine the function o~,~(x, y) with the 

compact support !ci,j which is continuous in Q, linear on each triangle of the domain 
b U s, such that 

oi,j(xmYYn)= ‘3 (i, j) = (m, n), 
(i, j), (m, n) E 2 h U f”. (1.10) 

= 0, (4 j) f (m, n), 

Further let @ = {~~,~(t)} be a difference function defined in the nodes (xi, yj). 
Consider the functions 

$Cx3 Yv l) = C Vi,jtt) wi,j(x9 Y>, 
(i,j)& 

m, Y, f> = (i j,zhuPn Vi,kt) wi,j(x~ Y)* 

(1.11) 

(1.12) 

The sets of functions of form (1.11) and (1.12) will be denoted by fib and Hh, respec- 
tively. Besides, let 

tih = Span{w,,,: (m, n) E R”} c @(Q), 

Mh = Span{w,,,: (m, n) E Xh Ufh} c W#2). 
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Let the function 6(x, y, t) E fib satisfying integro-differential relation 

c- 1 $9 +Z(y3,v)=(F,v), V&W, 

G(x, Y, (9, v> = 0, (1.14) 

be an approximate solution of (1.7). We determine an approximate solution of 
problem (1.8) as the function Q(x, y, t) E Hh, satisfying the integro-differential 
relation 

VEMh, (1.15) 

(8x, Y), O),u) = 0. (1.16) 

2. GALERKIN METHOD 

Let us obtain estimates for the differences u’- 6, u^ - I$ of solutions of problems 
(1.7), (1.13) and (1.8), (1.15), respectively, following [IS]. 

Determine the functions 0, I!? as projections of the ri, u^ solutions onto subspaces 
zlhJ-zh: 

O= (u’(Xi,Yj, t): (i,j) E Rh U P; O(X,Y, t) E flh}, (2-l) 

O= {u”(Xi,Yj, t): (i,j) E ZZh Ufh; Ij(X,Y, t) E Hh}. (2.2) 

Consider the differences r? - 0 = q and ti - 0 = 9. They are estimated on the basis of 
the theorem of approximation 2.3.1* [8]. The estimates can be written in the form 

ho = max(h, r), (2.3) 

(2.4) 

We can write similar estimates for the derivatives, 

(2.5) 

(2.6) 

Reducing the order of accuracy of the problem with the Dirichlet boundary 
conditions is a consequence of “transporting” boundary conditions from the 
boundary S to 3. If the boundary S is such that the distance between S and s is of 
order of hi estimates (2.3), (2.5) will be of order ho [8]. 
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Let us estimate differences of solutions of problems (1.7), (1.13) and (1.8), (1.15), 
respectively, making use of (2.3)-(2.6). 

We introduce the notation 

&;+, f=&P, p= p-e, 

&;-4, q=u^- p, & ~-~. (2.7) 

Here FE fib, PE Hh are some arbitrary functions. Consider problems (1.7), (1.13). 
From (1.7) it follows that 

Subtracting (1.13) from (2.8) yields 

(2.8) 

Selecting u = r(-, t) E I$” in (2.9) and employing (1.6) we arrive at the inequality 

which can be rewritten 

Selecting E = (c, + 1)/c* and integrating it over z from 0 to t we come to 

II mlL,uI, + Il~llLI(O,L;~;m, 

Hence 

(2.11) 

(2.12) 

(2.13) 
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From (2.13) we obtain the inequality 

(2.14) 

In deriving (2.14), we made use of the inequality of the triangle and the estimate 

llflll L,(O,T:L,(R)) G c 
c 
II dIL*(o,T;L*(m 

+ ll~ll~~2,0,T;,,J * 

In (2.14) we can choose P= 0. Taking into account (2.3), (2.5) then yields 

The estimate for [== u^ - $? is obtained. in a similar way, 

II [II L,(O,T;L#?,, + II 411 L,(O,T;W;(nH G Csho. 

Thus, we prove 

(2.16) 

THEOREM. Let conditions (1.6) be fulfilled for the parameters of problems (1.7) 
(1.8). Then the approximate solutions given by (1.13), (1.15) deviate, respectively, 
from the accurate solutions in the values satisfying (2.15), (2.16). 

3. DIFFERENCE OPERATOR 

Let us study in more detail the form of differential difference equations (1.13) 
(1.14) and carry out some transformations. First we note that the grid operator at the 
time derivative is calculated by means of the “lumping” method, preserving the order 
of estimates (2.15), (2.16) 1201. 

Considering the above and the fact that the sets of functions {We,“}, (m, n) E Eh 
and (w,,,}, (m, n) E Rh U fh are bases in Mh and Mh, respectively, we can write 
relations (1.13), (1.15) as systems of ordinary differential equations: 

&%i,n at f 0 om*n dx dy + I@, w,,,) = (F, %z,,)~ 

@EEih, (m, n) E En, rp,,nw = 0; 

a9,,, 
at I n wm-n dx dy + I(@, o,,,) = (F, %,& 

f$fHh, (m, n) E Rh U fh, tp,,“(O) = 0. 

(3-l) 

(3.2) 
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For convenience, we can present the systems of equations (3.1), (3.2) in the operator 
form. To begin with, we introduce the notation. Let us assume that the difference 
function Q’(t) = {9,,,(t)} belongs to the class Q”, if 

Q, = {q&$ (??I, n) E ih u fh; 9,,, = 0, (m Q) E Fhl 

and to the class Q”, if 

@ = {f&$ (m, n) E Xh Ufh}. 

Then the systems of differential equations (3.1), (3.2) are formally written as one 
equation 

(3.3) 

In (3.1) @ E Q” while in (3.2) @ E Qh. The operator 6J in the mesh nodes (m, n) is of 
the form 

Wlmn = 9rn.n ja w,,,,, dx dy. 

For problem (3.1) (m, n) E Rh; for (3.2) (m, n) E gh U fh. 

The operator A in the node (m, n) is given by 

The coefficients a, /I are obtained by substituting representations (1.1 l), (1.12) for 6, 
9 in the bilinear form 1(9, CO,,,). They are of the form 
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_ aw~,~f~ aWVt,n awWt*, aw”l,, dxdy (3 sc) 
ay ax I ax ay ' . 

-aw,*,.R*, awWI awmil,nki aw,,,,, dxdy 
aY ax ax ay I ’ 

(3.5d) 

D awm*l,~Fl awm+n + awm*l nTl aw, n 
aY ax ax’ ay 1 dx dy, 

(3.Se) 

P m,n 
m*1,n = j nnu m4h,n 

(3Sf) 

P m.n m*:l,n*1 = i nn% mtl.ntln~m.n 
dx dy, (3Sh) 

a% dy. (3.5) 

To determine A in formulas (3.4), (3.5), (m, n) E Rh, @ E @ for problem (3.1), 
(m, n) E Rh U fh, @ E Q” for problem (3.2). From (3.5) it follows that the coef- 
ficients a, p have the properties 
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(3.7) 

Next we obtain expressions of a for the two main types of the compact support 
K m,n of the function w,,,, namely, when K,,, E S2, and K,,, E a2 and the nodes are 
not neighbouring upon the boundary nodes. Then the compact supports are of the 
form shown in Fig. 1. 

Having computed derivatives of the functions wi,j in (3.5), we obtain formulas for 
a [19]: 

c%l,Yn) E Q,: 

aK*, = I ~ln~m,,,ln~m,, [ 1 
s-p dxdy, 

1 mn 

amfl,nf’ =G I 
D dx dy, 4ZL,, = 0. 

R,nKm*,,n*,rlKm,n 

(3.8) 

FIG. 1. 
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Note that in practical calculation of the integrals in (3.7), (3.8) for A, B, C, D, 
E C’(fi) one can make use of the piecewise-linear representaion of the coefficients 

on the given triangulation 0. Scheme (3.3) maintains the order of accuracy [S]. 
We consider now expression (3.4) for the operator A. It is not difficult to see that 

if we take into account the first relation of (3.6), the operator /i can be written as a 
sum of four one-dimensional difference operators 

/i=/i,,+n,,+/i,,+n,, (3.9) 

Let us investigate properties of the operators AXX, A,,, AYX, A,,. Introduce scalar 
products in grid spaces Qh, Qh, 

(@, Y), = Z: Vi,jV/i,jy @, YE Oh, 

(i,j)Edh 

(CD, y)= C vli,jWi,j’ @, YE Qh. 

Consider the functionals 

On the basis of (3.10) 
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If we use properties (3.7) in (3.11) the second sum equals zero. Making use of (3.6) 
for the first sum and rearranging the terms, we obtain 

where 
f’;= {(m,n):(m,n)Ef;;(m- l,n)Ea;uf;}, 

f;= {(m,n):(m,n)Ef;;(m- l,n)ER;uQ}. 

From the latter, making use of (3.8), we have 

(A,, @, @>cl = 
(3.12) 

Similarly we obtain relations for (‘ixx@, a), 

where 

f: = {(m, n): (m, n) E P, ; (m - 1, n) E R:}, 

f; = {(m, n): (m, n) E f* ; (m - 1, n) c Rf}. 

From (3.12), (3.13) it follows that a sufficient condition to fulfill the inequalities 

(A,, @9 @)” a 09 CL.@, @> > 0 (3.14) 

is the condition 

Adxdyqj 
T!h.” nR 

D dx dy 

for any triangle Tz,, Ed. In a similar way we derive conditions of positive 
semidefiniteness of the difference operator AYv 
fjh, Qh: 

on the classes of difference functions 

(4?, @9 @>o 2 0, (A,, @, @p> 2 0. (3.16) 

581/52/2-3 
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The condition is of the form 

I’ B dxdy >$ j D dx dy 
Tkn”ll i-k,” no 

(3.17) 

and should be fulfilled for any triangle Tk,, c ii. 
Let us consider the difference functional 

Using (3.6), (3.7) yields 

@X,@Y @>o= c ~~‘fl,n+*(V)m,n-(4m+,,n+,)2, 
~m,n)~t7~uP;Y (3.18) 

~={(,,n):(m,n)Er:;(m-l,n-l)E1P”:u~~}. 

Here the fact that 

m.n %*1,n*1 =o if t~,*~,~~~nK~,~)=% 

is taken into consideration. Substituting then the expressions for (~~~r,~+, from (3.8) 
we obtain 

(3.19) 
X 

I D dx dy PA,,,,, - ‘em+ I,,,+ 1)‘. 
~m+l,n+ln~m.n~~l 

Since 

I Ddxdy>O if (Km+l,n+lnKm,n)=f4 (3.20) 
~m+l.n+ln~m.nn~l 

then from (3.19) it follows that 

(4, @, @>ll 2 0. (3.21) 

Similarly, 

(A,, @, @> > 0. (3.22) 
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The functional (AYx@, @) can be written 

Since 

QyA @>I3 = (m.n)$“pY (- ah+,,.JK.,.,, D dx dy) 
x cP*,n -A+ I,n- A29 

1 

p= {(m,n):(m,n)Er:;(m- I,n+ l)E@uf;}. 

I D dx dy < 0 if (K m+I,n-d-%,.)~Q2~ (3.23) 
~m+l.n-ln~m.nn~l 

then 

(Ayx @, @> > 0. (3.24) 

In the same way we obtain the estimate for .AY, on the class of grid functions Q”: 

(Jyx @, @) > 0. (3.25) 

It is of interest to obtain the upper bound for the operators Axx, AYv, Ax,,, AYx. It is 
easy to obtain the inequality 

(A,,@, @h & 4 max 
(X,Y)ER 

(S-T) (@, a)>,, hr, 

for (A,, @, @),, if we apply relations (3.12) calculated above. Similarly 

(3.26) 
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To conclude, Iet us prove the lower bound for the operator 0 on classes of 
difference functions Q”, Q”. Consider the functional 

(3.27) 

In deriving (3.27), we made use of the fact that the minimum of triangles whose 
vertices can be the node (m, n) E Rh equals four. 

The estimate for grid functions # E Qh depends on a minimal square of inter- 
section of the triangles Ti,, c b with the domain R. Since it is assumed to equal shr, 
then 

(fm, @) > shr(@, CD). (3.28) 

Thus, summing up the results obtained in this section one can note that the 
differential equations (3. l), (3.2) can be presented in the operator form (3.3), where 6 
is a positive-definite grid operator satisfying estimates A (3.27), (3.28) on the classes 
of functions Q”, Qk, respectively, and the grid operators are fulfilled if conditions 
(3.19, (3.17), (3.20), (3,23) are presented as sum a sum of the four positive-definite 
operators A,, AYY, A,,,, A,, for which estimates (3.14), (3.16), (3.21), (3.22), (3.24), 
(3.25), (3.26) hold on the classes of difference functions Q” and Q”. 

Let us discuss in more detail conditions (3.15), (3.17). We will show that they are 
stronger than the ellipticity condition of the operator ( 1.6 *) which can be rewritten in 
the form 

AB-D2>0 (3.29) 

or 

44 > ww) IDI, (3.30) 

B > KIWI) PI* (3.3 1) 

Conditions (3.15), (3.17) signify that there exists such p = const that 

A >P PI9 (3.32) 

23 2 U/P) ID I- (3.33) 

The question of existence of the number p requires’that we consider several variants 
for the values of the coeffkients A, B, D in the domain 52: 

1. A>[Dl, B>lD(, 

2. A > p1, B <Ia V(x,y)EO. 
3. A<IDI, B>lDJ, 

4. @ipI, Bga, 
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Without going into details we will point to the final results: 

1. If there is no additional data on A, B, D, conditions (3.32), (3.33) are 
fulfilled at least for p = 1. 

2. If a = max(A/] D 1, b = min(( D I/B), and u < b, then a <p < b. 

3. Ifa=max(B/]DI), b=min((D(/B), and a<<, then a<p<b. 

4. The number p does not exist. 

Hence, in order that a regular mesh exist, where one-dimensional operators are 
positive semi-definite, it is necessary for one-dimensional components of the 
differential operator to meet stronger conditions than the two-dimensional ellipticity 
condition. 

4. SPLITTING-UP METHOD 

The results of Section 3 allow us to use the splitting-up methods for solving 
probIems (3.1), (3.2) with respect to time. Particularly, we can apply the two-cycle 
splitting-up method treated in [S]. 

Thus let us consider 

l!P@ atf”@=“L @b(O) = 0 

on the interval (0, T]. In this section we will not distinguish between problems (3.1) 
and (3.2), since the splitting-up method is formulated similarly for both problems. 

The norm I]. ]I,, used in this section is generated by the scalar product (., .),, or 
(e, .) depending on the type of the problem. 

The operator 6 in (4.1) is positive definite and estimate (3.27) or (3.28) is fulfilled 
for it. The operator A is representable in the form 

~=~.,+~,,+~i,,+~,,, (4.2) 

where 

Let us partition the interval (0, T] into subintervals tj ( t Q tj+, (r = tj+, - tj). 
Following [5] we construct a system of difference equations consisting of a sequence 
of the Crank-Nicholson schemes for operators A,,, AYY, AXY, AyX, A,,, AX,,, AJY, 
/i,, on the interval tj-, < t Q fj+ I. 
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The scheme is of the form 

(8 + (T/2) A,,) @j-(3’4) = (B - (r/2) /txxp@;- ‘, 

(e + (T/2) A,,) 4y2) = (B - (T/2) A,,) @,jry4), 

(0 + WI 4,) ti- (114) = (0 - (7/2)n,,) @p(-(1/2), 

(8 + (r/2)/1,,)(@,( - rjj) = (0 - (r/2) A,,,) @,(-“‘4), 

(6 + ($2) A,,,) @(+(“4) = (6 - (7/z) L&)(@-; - -rf’), 

(6’ + (r/2) A,,,) @jr+(1’2) = (0 - (r/2) /ix,) @;(1’4), 
(4.3) 

(8 + ($2) L$,,) p:(3’4) = (6’ - ($2) /iy,) w;(“*), 

(8 + ($2) A,,) @‘,+ ’ = (6 - (+!)/1,,) @(+(3’4), 

where f’ =f(tj). 
Excluding the functions @F’“‘41 (a = -3, -2, -1, 0, 1, 2, 3), from (4.3), we can 

rewrite it as 

where 

(Pi+’ = I&-’ + 2d&,,L,,L,,j-j, * (4.4) 

L = L,,L,,L,,L,,L,,L,,L,,L,,, 

L,, = (8 + (@I 4- ’ (0 - W) AA 

L,, = (8 + W) 4X’ (6 - W) ~,,), 

L,, = (e + WI 4,) - 1 (0 - @PI &A 

~~~ = te + ($I A,J - 1 (0 - WI 4. 

(4.5) 

Let us investigate the accuracy of scheme (4.4) with respect to time. Substitute the 
solution of problem (4.1) in (4.4) denoting d = @(f,). Assume then that the time step 
7 is such that conditions 

WI ll~-~~xxtlh < 1, 
@PI II e- 1411 < 1, 

WI Iw~4,lI < 1, 
WI 1w~4,li < 1 

(4.6) 

are fulfilled. Concrete numerical values of admissible 7 are easily obtained on the 
basis of (3.26), (3.27), (3.28) with the help of (1.6). Then expanding L,,, L,,, Lxy , 
L,, in power 7 series, we obtain 

@+I = p - 27e-9 - ((27)2/2)(e-2)2] @-I 

+ 2re-lp + 7e-*/i]fi + o(73) (4.7) 
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or in another representation 

8 
@+I _ H-1 

2r 
+ A(E - re-'A) d-' = (E - se-'A)fj. (4.8) 

In (4.7), (4.8) E is the identity operator. 
Excluding the function @j-l from the second term in the left-hand side of (4.8) we 

make use of the expansion 

@j = @,“-I + (mpty-’ 7 + O(r2). (4.9) 

For (M/&y’- ’ the relation 

(M/at)-- = -e- ln~j- l + e- ‘fj + q7) (4.10) 

is fulfilled with the accuracy O(r). Substituting (4.10) in (4.9) we obtain 

e@~=(e-7A)@j-‘+7p+0(72). 

Hence 

(e- 74 @j-l = e@ - 7j-j + o(72). 

Substituting (4.11) in (4.8) we arrive at 

e @+l- ‘j-’ 
27 

+ A@ = fj + O(7’). 

Hence 

e$-+m=f+ 0(7*), t= tj. (4.12) 

(4.11) 

Thus the scheme is of second-order accuracy in time. 
Let us analyze the stability of the method. From (4.4) 11 (pj,” II,, & I[Lll,, 11 @j-r II,, + 

~7llLh II~,,llh llL&, II&A, Il./$. Estimating normS of the operators L,, L,, 
Lxy , L,, according to Kellogg’s lemma, we have 

Then 

IlLxxllh G 17 IlLyyllh G 17 lILyILl G 1, lILyA G 1. 

IlLllh G Lllh lIql/I IlLYllh IIUlh IlLllh llkryllh 
x IILA# llLxxll/l Q 1. 
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Consequently 

II Wllh < II @i-‘lI, + 2 llf’llh~ 

or, making use of the recursion, 

II @: ’ llh < csjG 

where 

G = max ]lfj]],, . 

(4.13) 

From (4.13) there follows the stability of (4.3) on the final interval (0, T]. 

5. NONUNIFORM MESH 

Expansion of the grid operator of the finite element method in a sum of one- 
dimensional operators has been obtained for meshes whose nodes are formed by the 
lines which are parallel to the coordinate axes. It is of interest to discuss a possibility 
of such an expansion on irregular meshes. 

As will be shown, it is possible for irregular meshes of a special type. 
Consider Eq. (1.5) for D z 0 in the domain Q = L2 X (0, T], 

au a A au --- --QSp!+2&+., 
at ax ax ay ay ax ay ay ax 

with the initial conditions 

and the boundary conditions of two types, 

uI,=O, 

a24 
5, = 0, 

where 

f = cos(nx) A & + cos(ny)B ; 

+ cos(nx)C ; - cos(ny)C &. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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Conditions (1.6) are fulfilled for the coefficients and the right-hand side. Define weak 
solutions of problems (5.1)-(5.3) and (5.1), (5.2), (5.4) by the relations 

and 

(5.5) 

(5.6) 

where 

Assume then that the domain 0 is covered with a finite number of quadrangles n;, 
satisfying the conditions: 

the domain of intersection of the Z7, can be only their boundaries; 
the II, are convex; 
each inner vertex of the quadrangle can be a vertex of only four quadrangles. 

Introduce the domain d cL! with the boundary g as the largest combination of 
quadrangles belonging to R and the domain fi 3 R with the boundary s as the least 
combination of quadrangles containing a. Vertices of the quadrangles ordered in 
some way with respect to the index i will be referred to as mesh nodes. Determine 
sets of the indices zh, P, dh, fh by the relations 

Kh = {(i): (xi, yi) E .n’}, fh = {(i): (xi, yi) E LT}, 

Rh = {(i): (Xi,yi) E h}, fh = {(i): (xi, yi) E j;}. 

Now, divide each of the quadrangles lIk by one of the diagonals into the two 
triangles Ti, Ti and assume that the areas of the domains L!\TZ; are not less than the 
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value shi for any triangles T;;. Here and later h, is the biggest of the sides of the 
triangles in fi and s is constant. Determine the functions wi(x, y) for i E tih U f” 
which are continuous in R linear on each triangle G c 5, such that 

0i(xj9Yj> = l> i=j, 

= 0, 
i,jElthUfh. 

i#j, 

Introduce also the functions 

@txT YY ‘I= z Vi(f) wi(x9 Y>2 (5-7) 
ioRh 

@tx? Yy I>= IERTuPh Pitt> Di(x, VI (5.8) 

to be called approximate solutions of problems (5.5), (5.6), respectively, if they 
satisfy the relations 

+ I,(@, wi) = (F7 Oi), i E Reh, 

(5.9) 
tcp’Cx, Y, O), wi) = O, 

+ I,($, wi) = (F, Wi), iE RahVfh, 
(5. IO) 

Estimates for differences of the solutions 6 = zi - & [ = u^ - Q are also obtained, as in 
the case of regular meshes on the basis of the approximation theorems for irregular 
meshes, proved in [8]. They are of the form 

The improvement of estimates (5.11) to the order h, as compared to similar estimates 
(2.15), (2.16) for regular meshes is due to the use of irregular grid allowing approx- 
imation of the boundary conditions (5.3) to the degree of h, [8]. 

Let us analyze the properties of the grid operators determined by relations (5.9), 
(5. IO). It is difficult to carry out the analysis in the coordinates (x, y). For simplicity, 
let us make use of isoparametric transformations [9]. 

Introduce a piecewise-linear transformation P’: (x, y) + (I$ q) satisfying the con- 
ditions: 

(a) for each triangle Pk the transformation 4p is linear; 
(b) ik transforms each quadrangle fl, into a unit square P,; 

(c) P’ transforms the domain 0 into the domain A, d into 2, and fi into a so 
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FIG. 2. 

that topology of d and fi is preserved; that is, the ordering of the squares P, and the 
common sides and the vertices of lIk remain common sides and vertices of P,. 

If in each quadrangle l7, the vertices are counterclockwise ordered so that index 
(1) denotes a vertex that is nearest to the origin in the plane (<, II), it is easy to see 
that the form of transformation y depends on the kinds of partitioning the 
quadrangle n, into triangles by the diagonal. 

Let us consider both cases of partitioning: 

(i) The diagonal connects points (x, , Y,) and (x3, Y3) as shown in Fig. 2. If we 
take & = <r = 6, + 1 = 6 + 1, qj = q,, = q, + 1 = qz + 1 into account, transformation 
is of the form 

for T:: x = x, + (x2 - x,)(r - 5,) + (x, - x,)(tl - r,), 

Y=Y, + (Y2 -YJ<- r,> + (Y3 -Y*h - a,>9 (5.13) 

for Ti: x=x, + (x3 -x4)(< - C,) + (x, - x,)(rl- tl,), 

Y =y, + (Y3 -Y‘x- a + (Y4 -Y,)(rl- VI>. (5.14) 

(ii) The quadrangle is triangulated by the diagonal connecting points (.x2, YJ 
and (x4, y4) (Fig. 3). Then the transformation is of the form 

for Ti: x = x, - (x1 - x2)(t - t,) + (x4 - x,)(v - rl,), 

Y =y, - (Y, -Y&t- a + (Y4 -Y&l - VI), 
(5.15) 

for Ti: x = x2 - (x4 - x3)(< - (<, + 1)) + (x3 - x,)(rl- ?J, 

Y =Y2 - (Y, -YX - (5, + 1)) + (Y, -Y*)(V - VI). 
(5.16) 
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The Galerkin equation (5.9), (5.10) in the coordinates (5, q) can be rewritten 

+ 1(9, WJ = (f, WJ, 7 iEkhVfh, 
(5.18) 

(9(& VT O>, wi)l = O. 
Here we use the notation 

(5.19) 

where transformation formulas x(r, +-), y(& ‘1) are given on each triangle Fk by one of 
the relations (5.13~(5.16) depending on the triangulation of the quadrangle nk, 
where q belongs. Depending on the form of transformation, the Jacobian jJI and the 
coefftcients A’, g, c, 0” are as follows: in the case of triangulation of form (i), 

for T$ 

IJI = I(x* -x,)05 -YJ - (x3 - X*NY* -VA 
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and for Ti: 

I4 = I(% - Xd(Y4 -Y 1) - (x4 - ah - Y4)9 

K=AZ=~[u(y,-y,)2+b(x,-x,)21, 

#=B, = & [a(y3 -yJ2 + b(xg -xd2], 

15 = D, = + [a(~, -yd(y4 -VA + b(xj -xJ(xa -x,)1, 

&=Cz=C, 

or in the case of triangulation of the type (ii), 

for T:: 

I.4 = 1(x4 - Xl)(Yl -v2) - (Y, -YJ@, -x2)1 

A=A1= I4 
-!- MY, -YA2 + Nx,l- x,>21, 

B = B, = + [a(~, -y2)’ + b(x, - xd2], 

B = D, = + MY, -Y,)cv, -v2) + 4x4 -x,)(x, -x*)1, 

Cdl’C 

and for Ti: 
I4 = 163 - X2KY4 -YJ - (Y, -Yzh - XA 

A=A2= I4 
1 b(YJ - Yd2 + w, - %I2 19 

(5.21) 

(5.22) 

B=B2=+ Iu(Y,-Y~,)~+~(x~-x~)*], (5.23) 

6 = D2 = + MY3 - Y2NY4 - YJ + wx, - x2)(-% - X,>ll 

c=c2=c. 

In (5.20)-(5.23) we use the notation 

a = A (42 rl), YG tl>h 

b = Jw5~ rt), YG ll))t 

c = C(x(C VI, Y(G 9)). 
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It should be noted that since the quadrangles Lrk are convex, the values of their angles 
are bounded within 0 < 6, ,< a < 6, < 71 where a,,, 6, > 0 are constants, consequently 
the Jacobian IJI of (5.13)-(5.16) does not turn into zero anywhere in 0 1181. Here, 
the coefficients A, B, C E L,(Q) and thus L,#, 6, C’E L,(d). In particular, if A, B, C 
are approximated by piecewise-linear functions on the triangulation domain Q the 
coefficients 2, a, c, 0’ remain linear on each triangle 0; cd and can have only finite 
discontinuities in the vertices and along the sides of the triangles. 

Besides, let us note that the definition of transformation Y implies that in 
L? = ok P, mesh nodes are formed by intersection of the lines parallel to the axes 
O<, Oy and are apart from each other at distance unity <, = co + m, q, = v. + n. 
Here m and n are the numbers of the lines with respect to [ and v correspondingly. If 
the origin is selected so that to = v,, = 0 then m and it are coordinates of the mesh 
nodes with respect to c and rl correspondingly. 

In fi, mesh nodes were i-index-ordered. In the transformed domain A it is 
convenient to change the notation of the mesh points making use of indices- 
coordinates of the nodes (m, n) (m = &, n = vi). Then relations (5.19) become 

The w,,, are functions which are continuous in A linear on each triangle, such that 

w,,,(k e) = 1, 

= 0, 

Cm, n) = (k e), 

Cm, n) Z (k e). 
(5.25) 

Having applied the “lumping” method to calculation of the mass matrix we can write 
(5.17), (5.18) as 

avl?I,n 
1  ̂at A 

w,,, 14 dt dv + I(& w,,,) = G wm,,,), (m, n) E 2, (5.26) 

aVlm.n 
I at A 

w,,, I4 &dr + I(& w,,,) = cf, wm,nh (m, n) E d U 8, (5.27) 

Wm.“(o) = O* 

We note that problems (5.26), (5.27) coincide with (3. l), (3.2), notation. inclusive; 
that is, they reduce to the form (3.3) with the coefficients of the operator /i deter- 
mined by relations (3.5) accurate to within the notation and the fact that in this case 



COMBINATION OF FINITE ELEMENT-SPLITTING-UP METHODS 263 

&vm,,/8<, a~,,,/@ equal l,O, or -1 and h = k= 1. Then the grid operator A, 
approximating the differential space operator, can be described as a sum of the four 
one-dimensional operators 

A=A,,+A,,+A,,+A,,. (5.28) 

For scheme (4.3) to be stable, the operators A,,, A,,, Alrl, A,, should be positive 
semi-definite. Positive definiteness of the operator 8 at the time derivative is obvious. 
The condition of positive semidefiniteness of the operators AlI, A,,, A[,,, A,, is 
obtained in a similar way as relations (3.15), (3.17), (3.20), (3.23), respectively. 

In triangulation of the quadrangles of form (i) these conditions can be written 

jcnA4d5drl>j D,&dq, 
: 0$-3A 

jonAWWOj D,&dv, 
: +-IA 

junA4d5&>j D,dt&, 
: @IA 

I, 
: 
nA B, d5 drl> I, D, d5 dtt, 

: 
nA 

j. 
: 
nA 4 dt dv + joinA D, dt dtl > 0. 

For triangulation of the form (ii) for transformations (5.15), 
represented as 

jonAWdO-j 4&d% 
: o,$A 

jonAB,dWv>-j D,dtdv, 
: o$A 

jonA4d5dO-j h&d% 
: $A 

jnnAWCdO-j D, dt dv, 
: o$TA 

j~nAD,drd4+j~nAo,drdlg0. 
: : 

(5.29) 

(5.16) conditions can be 

(5.30) 

Substituting the expressions for coefficients A,, B,, D, , A,, B,, D, in (5.29), after 
algebraic transformations, and changing to the coordinates (x, y) yields 

&KY, -Y212 + (Y, -Y,T - (Y2 -YJ21 

+ Z1[(XJ - x2)* + (x, - xJ2 - (x2 - x1)*] > 0, (5.3 1) 
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Here 

A, = I A dx dy, B, = 
i 

B dx dy, 
T$-lQ T,pl 

A, = I A dx dy, B, = 
j 

B dx dy. 
T,2Cdl T:CXl 

Relations (5.3 l), as indicated earlier, must be fulfilled for all rt; c 0,. To calculate 
conditions (5.30), we substitute the values A,, B,, D,, A,, B,, D, making use of 
(5.22), (5.23). A s a result we arrive at the inequalities 

MY4 -YA2 + (Y1 -Y212 - (Y2 -YJ'l 

t B, [(x4 - XI)' t (x4 - x*)2 - (x2 - XI)*] > 0, 

&[(Y, -YA2 + (Y, -Y*) - (Y, -Y,)'l 

+~,[(x,-x,)*+(x4-x2)-(x4-x1)*]~0, 
(5.32) 

A*[(Y, -Y212 + (Y, -Y212 - (Y.5 -Y3121 

t &[(x3 - x2)* + (x4 - xd2 - (x, - XJ’] > 0, 

A,[(Y, -YA2 + (Y4 -Y212 - (Y, -Y2121 

+ J&x4 -x3)* + (xq -x2)2 - (x3 -x2)*] > 0, 

&KY4 -YA2 + (Y2 -YA2 - (Y, -Yz)'l 

+ B, [ (x4 - x*)2 t (x2 - x,)2 - (x4 - x2)* 1 

-+A,KY, -Y212 •t (Y4 -Yd2 - (Y4 -Y*>'l 

t B,[ (x3 - x2)* t (x4 - x3)' - (x4 - x2)*] 2 0. 
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FIG. 4. 

Conditions (5.31), (5.32) have a clear geometric sense. Analyze, for example, 
relations (5.31). Let the triangle Ti be deformed along the axes x and y propor- 
tionallly to fi and a, respectively, and the triangle Ti be deformed along the 
axes x and y proportionally to fi and a, respectively (Fig. 4). If we denote the 
lengths of the sides of the resulting triangles Ti by d, , d,, d, and e, , e4, e3 and their 
angles by a,, a*. a3 and p, , &, p3, respectively, conditions (5.3 1) will be written 

Rembering that 

d: + d; - d: > 0, d: + d; - d; > 0, 

6-i + e: - e: 2 0, e: + e: -e: > 0, 

d: + df - d: + et + e: - e: > 0. 

(5.33) 

df + d: - d: = 2d,d, cos a3 ,..., etc., 

we rewrite (5.3 1) as the conditions for or, a*, CI), /I,, &, p3, 

a3 < 7$, a1 <72/Z P, < 7L/2, P3 < 7v2, 

d, d, cos a2 + e, e, cos P4 > 0. 
(5.34) 

’ Thus, the adjacent angles in the triangles Tk, Ti may not be greater than the right 
angle and one of the alternate angles may be greater than 7r/2 while the other may be 
as much less than 7212 as to satisfy the last of relations in (5.33). 

Of a similar sense are conditions (5.32); however, in this case the alternate angles 
are those at the vertices (x,, y2) and (x4, y,J. 

The alternate angles must meet the conditions similar to the last one from (5.33). If 
lIk is such that it is impossible to fulfill these conditions, the mesh must be 
rearranged. 

6. DETERMINATION OF THE TIME STEP 

The convergence of scheme (4.3) was proved under the assumption that r = r,,, 
where r, is determined by conditions (4.6) and has values of order r = O(min(dxk,,, 

SXl/S2/2-4 



266 MARCHUK AND KUZIN 

,4yhi,)). This is a severe constraint on the time interval that brings its value nearer to 
the time interval for the explicit scheme. The question arises as to what practically 
satisfactory values of r can be chosen in the suggested scheme for the given space 
interval. We shall try to answer this question by carrying out numerical calculations 
for a concrete equation which possesses suffkiently “bad” properties: discontinuity 
coeffkients and a solution with the boundary layer. Let us consider the equation 

(6.1) 

in the domain Q bounded by the curves 

x=0, x= 1, y = 0, y = H(x) s 1 - (l/n) sin 7rx (6.2) 

under the conditions 

uJs=O. (6.3) 

FIG. 5. Exact solution, t = 0.1. 
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The coefficients of the equation have the form 

E=A =H-‘, B=yH-y2 COS~~X~H-~, 

y= 10, C= +yH-‘, 

p = -50, O,<x<f. 

= 0, 1 X = 7, 

= 50, $<x<l. 

The right-hand side of Eq. (6.l),f, is chosen in the form corresponding to the solution 

u =Eewnzt sin 
c 

XY 
w 1 - (l/n) sin 71x ) v(x), 

q(x) = pealx + qeQx - 1, o<x<+, 

=pe ol(x-(1/2)) + qeo,(x-u/2)) _ 1, f<X,< 1, 

eal/l - 1 (6.4) 
4’ ea’/2 _ e%/2 3 p=l-q, 

a1 = -cam + dcmF5, a, = -Gap) - \/cJ2/4) + 7r2y, 

a= 1, o<x<+, 

= 0, 1 X = 5, 

=- 1, i<x<l. 

The form of the piecewise-linear representation of function (6.4) at the moment 
t = 10-l is shown in Fig. 5. The function u posseses the boundary value in the 
neighbourhood of the line x = f. Having in mind the form of the solution and the 
geometry of the domain 0, we chose an irregular grid. It consists of the points 

xi=xi-1 +Ax, (max dxi = 0.05, min dxi = O.OOS), 

yi,, = zj( 1 - (l/n) sin 7r-xi), zj=zj-, +Az, AZ= l/14. 

The meshes are triangulated as shown in Fig. 6. Calculations were carried out for 
r = 2 x 10e3, 10m3, 2 x 10e4, 10W4, 2 x lo-‘. In all the variants of the calculation 
the absolute error maximum is concentrated at the line of discontinuity of the coef- 
ficients, x = +. 

Figure 7 shows an approximate solution at I = 0.1, r = 2 x 10V4. 
As the parameter 7 increases, the errors of the solution near the line x = 4 increase. 

Figure 8 describes approximate solutions with a change of t on the line y = $(l - 
(l/z) sin RX). As the picture is antisymmetric with respect to x = f, the figure shows 
only one half of the graph of the function. One can see that the solution is described 
fairly well when r= 10P4. 



FIG. 6. Grid domain. 

FIG. I. Numerical solution, 5 = 2 x 10e4, I = 0.1. 

268 
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FIG. 8. -, exact solution; -.-, 5 = 10m4; --o-, T = 10-j; . -*- ., 5 = 2 X 10e3. 

Relative deviation u of the approximate solution from the exact one was calculated 
by formula u = ]] C- u]],,/]] u]],,. The calculations show that for r = 2 x 10m3, 
r= 10-3, r= 2 x 10e4, r= low4 the value of u remains constant with time. For 
r = 2 x lo-’ the value of u increases with time in the first steps. Then the error 
approaches an asymptotic value which does not vary with time. This is due to the 
fact that in this case in the first time steps there is an influence of the initial 
conditions which are exact. As one moves away from the initial conditions their 
influence dies down and the error assumes a value characterizing the accuracy of the 
scheme. The values of u are shown in Table I. 

7. APPLICATIONS OF THE METHOD 

(i) It has been indicated that the proposed algorithm has been used in the 
program designed to calculate optimal distribution of pollution sources in a water 
basin as a barotropic approximation [ 131. The equations of the pollution concen- 
tration rp are of the form 

TABLE I 

(7.1) 

5: 2 x lo-’ lo-’ 2 x 1o-4 1om4 2 x loms 
6: 0.752 0.593 0.261 0.172 0.127 
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. . u . . 

FIG. 9. Grid domain for the solution of problem (7.2), (7.3). 

Here IJI is the stream function, and Q is the pollution source concentration in the 
point (x0, Y,). 

(ii) Based on the method described in the paper, we have developed the 
algorithm and carried out calculations to determine the integral stream function in the 
domain approximating the world ocean in a nonlinear formulation [22]. The 
equations for the vorticity [ and the stream function w written in the spherical coor- 
dinate system are of the form 

(~fR)S+J[X,w]-“(di-~~)=F. (7.2) 

AHW=C-f, (7.3) 

Here Aq = V . (Vq), A,q = V . (l/HVq), J[p, q] = (Plqe -peqn)/a2 cos 0, A, 0 are 
the spherical coordinates, V is the operator of gradient on a sphere of radius a, a is 

FIG. 10. An example of the stream function pattern calculated using the finite element and splitting- 
up methods. 
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the earth’s radius, R, v are the friction parameters,fis the Coriolis parameter, H(A, 0) 
is the function of the bottom relief. To solve the problem a mesh has been chosen 
which is thickening in the regions of the intensive currents (Fig. 9). An example of 
the stream function calculated is presented in Fig. 10. 

(iii) The algorithm has been used in a baroclinic model of the ocean global 
circulation [19]. In that case the splitting-up scheme has been applied to solve two- 
dimensional equations resulting from the splitting of the three-dimensional equation 
of heat diffusion in the ocean. At each step of the splitting the two-dimensional 
equations are of the form 

z+ j, taliPzo~ Llij # aji. 
I J 

(7.4) 

These equations coincide with Eq. (1.1) to within the notations and they are solved 
with the help of the algorithm described above. 

CONCLUSION 

For the parabolic equations with mixed derivatives of the form (1.5), under the 
boundary conditions (1.3), (1.4), space approximations have been built by the 
Galerkin method on regular meshes using piecewise-linear trial functions. The 
difference operators obtained can be split into four difference operators applied in 
coordinate and diagonal directions. A condition of positive semidefiniteness of one- 
dimensional operators has been obtained whih imposes stronger constraints on the 
coefficients of the equation than the conditions of uniform ellipticity of the space 
operator of the problem (1.6*). This is natural because in this particular case the 
correctness must exist also for the split one-dimensionai problems. It can be shown 
that the splitting in a differential form of Eq. (1.5) results in the conditions similar to 
(3.15), (3.17). 

Positive semidefiniteness of one-dimensional difference operators can be used to 
substantiate the two-cycle splitting-up method which has convergence with respect to 
time O(r,) for 5 < r,. Numerical calculations show that the values r can be chosen 
significantly larger than r0 even for problems with discontinuous coefficients. 

The authors have considered and substantiated a possibility to carry out the 
splitting of the difference operator of the Galerkin method on an irregular grid for the 
case when the coefficient D at mixed derivatives is equal to zero. The stability 
conditions obtained reduce to geometrical conditions on a deformed mesh. 

The examples presented in the last section show that the algorithm may be useful 
in some physical application. 
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